A catheter and method for delivering a therapeutic agent (e. g. , an embolic material) to a vascular site. The intravascular catheter is navigated, at a first relatively small diameter, to the vascular site. Pressure is applied to the lumen of the shaft, thereby expanding an expandable portion of the catheter shaft from the first diameter to a second larger diameter, suitable for delivery of a therapeutic agent. The therapeutic agent is preferably disposed in the lumen of the shaft such that the expansion pressure is created, in part, by resistance of the therapeutic agent to flow through the lumen. Preferably, the shaft expands predictably with pressure. A reinforcement structure may be utilized in the shaft of the catheter, including the expandable portion. The reinforcement structure may include a plurality of circumferential elements, each circumferential element having a circumference and a means for permitting an increase in the circumference such that the shaft is able to expand.
An implantable vascular access device includes a housing having an inlet, an outlet, an interior chamber defined therein and a valve positioned between the inlet and the interior chamber. The valve is subcutaneously manipulated between an open position, in which fluid can flow between the inlet and the interior chamber, and a closed position in which the valve occludes the inlet. The device may include any combination of multiple inlets, outlets and/or interior chambers. In the preferred embodiment, the housing includes two separate interior chambers suitable for the inflow and outflow of a typical hemodialysis procedure. A method for accessing a vascular structure is provided which includes the steps of subcutaneously implanting the device connecting one end of a cannula to the outlet of the device and another end of the cannula to a selected vascular structure. The valve of the device is manipulated to permit fluid communication between the inlet of the device and the selected vascular structure. A needle is introduced through the inlet opening to access the selected vascular structure.
Method For Thermal Treatment Of Type Ii Endoleaks In Arterial Aneurysms
John Sherry - Needham MA David J. Sauvageau - Methuen MA
Assignee:
SciMed Life Systems, Inc. - Maple Grove MN
International Classification:
A61B 1900
US Classification:
128898, 606 28, 606 49
Abstract:
A method and apparatus that facilitates the prevention of type II endoleaks in stent-graft treated arterial aneurysmal sacs comprising a catheter having an elongate tubular body with a balloon or wire mesh basket attached to the body adjacent its distal end. The balloon preferably comprising a plurality of energy conducting elements attached thereto for transmitting RF energy to tissue to be treated. In operation, the catheter is inserted into the femoral artery of a patient and then advanced through the femoral artery into the aorta until the balloon or basket is positioned within an aneurysmal sac. Once in place, the balloon or basket is expanded to compress the clot material within the aneurysmal sack under a pressure in the range of about 2-5 atmospheres. While compressed, the clot material is then heated by transmitting RF energy to the wire basket or the conducting elements on the balloon until the clot material is cauterized and collateral blood flow channels in the clot material are occluded. The balloon or basket is then returned to an unexpanded state and the catheter is removed from the aorta.
A tubular prosthesis, which may be an endovascular prothesis, is provided which includes a tubular member (stent or stent/graft combination) and an outer covering having portions sealed to the tubular member. The tubular member is impervious to a pre-determined fluid, particularly an occluding fluid, while the outer cover is pervious to the pre-determined fluid. In one aspect of the present invention, the implantation of the prosthesis allows for occluding fluid to weep from the prosthesis and into a sac of an aneurysm to cause occlusion thereof without introducing the occluding fluid into the blood stream. In this manner, a Type II failure of the prosthesis may be avoided. In other aspects of the invention, therapeutic agents may be delivered and/or a seal may be formed about the prosthesis to prevent a Type I failure.
A tubular prosthesis is provided which includes a tubular member and an outer covering sealed to portions of the tubular member, with a pocket being defined therebetween. A filling agent, preferably a substantially incompressible agent, is disposed in the pocket so as to cause portions of the outer covering to expand from the tubular member. As an endovascular prosthesis, the filled pocket can be used as a seal against the wall of a blood vessel to prevent Type I endoleaks.
An implantable vascular access device includes a housing having an inlet, an outlet, an interior chamber defined therein and a valve positioned between the inlet and the interior chamber. The valve is subcutaneously manipulated between an open position, in which fluid can flow between the inlet and the interior chamber, and a closed position in which the valve occludes the inlet. The device may include any combination of multiple inlets, outlets and/or interior chambers. In the preferred embodiment, the housing includes two separate interior chambers suitable for the inflow and outflow of a typical hemodialysis procedure. A method for accessing a vascular structure is provided which includes the steps of subcutaneously implanting the device connecting one end of a cannula to the outlet of the device and another end of the cannula to a selected vascular structure. The valve of the device is manipulated to permit fluid communication between the inlet of the device and the selected vascular structure. A needle is introduced through the inlet opening to access the selected vascular structure.
John Sherry - Needham MA, US Fergus Quigley - Waltham MA, US
Assignee:
Boston Scientific Scimed, Inc. - Maple Grove MN
International Classification:
A61F 2/06
US Classification:
623 113, 623 132, 623 144
Abstract:
A low profile, implantable prosthesis includes (a) a tubular graft including opposed open ends and having yarns in a textile pattern to define a textile wall having a luminal surface and an exterior surface; and (b) a tubular, radially extensible member including a portion arranged in a closed zig-zag pattern, the pattern having a series of angled bends at proximal and distal ends thereof, and longitudinally extending members having opposed proximal and distal ends, the distal ends being disposed from the angled bends of the proximal end; the longitudinally extending members having a plurality of detents for securing the yarns within the textile pattern at one of the opposed open ends, wherein the yarns of the textile patterns are securably disposed to the detents. The detents may be holes, inwardly extending notches, outwardly extending protuberances, or combinations thereof in the longitudinally extending members. The textile pattern of the graft may be a braided textile pattern, a woven textile pattern, a knitted textile pattern, and combinations thereof.
An implantable vascular access device includes a housing having an inlet, an outlet, an interior chamber defined therein and a valve positioned between the inlet and the interior chamber. The valve is subcutaneously manipulated between an open position, in which fluid can flow between the inlet and the interior chamber, and a closed position in which the valve occludes the inlet. The device may include any combination of multiple inlets, outlets and/or interior chambers. In the preferred embodiment, the housing includes two separate interior chambers suitable for the inflow and outflow of a typical hemodialysis procedure. A method for accessing a vascular structure is provided which includes the steps of subcutaneously implanting the device connecting one end of a cannula to the outlet of the device and another end of the cannula to a selected vascular structure. The valve of the device is manipulated to permit fluid communication between the inlet of the device and the selected vascular structure. A needle is introduced through the inlet opening to access the selected vascular structure.
While movies might not actually make viewers feel better, they do "allow us to experience strong emotions in safe places," said John Sherry, an associate professor specializing in mass media effects at Michigan State University.
Me - Sports Motivator (2011) Me - Life Coach (2005-2011)
Education:
Cardinal Newman, Coventry, UK - Sports
About:
I'm John Sherry the Sports Motivator I was once a 'little fat kid' with a sports dream that nobody would believe in or support me from teachers to parents, friends to coaches. So, I motiva...
Tagline:
I'm a Sports Motivator helping all sports people make their dreams come true