A pipeline inspection tool includes two pole magnets oriented at an oblique angle relative to the central longitudinal axis of the tool body. An array of sensor coil sets is located between opposing edges of the two pole magnets and oriented perpendicular to the central longitudinal axis. Each sensor coil set includes a transmitter coil and two opposing pairs of receiver coils that are gated to receive reflections from the wall of a tubular member. Because the line of sensor coils is rotated relative to the magnetic bias field, the receiver coils are in-line with, and have the same angular orientation as, the transmitter coil. The tool provides improved sensitivity to small defects, substantial decrease in RF pulser power requirements, full circumferential coverage, self-calibration of the transmitted signals, and less interference between transmitter coils caused by acoustic ring around.
James Simek - Sandy UT, US Tod Barker - Clearfield UT, US Mark Gregoire - Sandy UT, US
International Classification:
G01N 27/82
US Classification:
324240
Abstract:
A pipeline inspection tool has an even number “n” of spiraled pole magnets spaced equidistant apart and spanning the length of the tool. Each pole magnet, which preferably has a conformable upper surface, is rotated or spiraled about the tool body so that a second end of each pole magnet is offset a predetermined amount “α” relative to a first end of that same pole magnet. The amount of rotation α applied to each of the pole magnets produces a magnetic field oblique to the central longitudinal axis of the tool body (and therefore the pipe) and one that covers 360 of the internal wall surface of the pipe. A helical-shaped array of magnetic flux sensors may be arranged about the tool body and substantially equidistant between adjacent pairs of pole magnets. The tool detects axially oriented, circumferentially oriented, and volumetric anomalies and allows for single pass inspection.
Magnetic Field Analysis Method And Apparatus For Determining Stress Characteristics In A Pipeline
Robert W. Downs - Houston TX James C. Simek - Richmond TX
Assignee:
Vetco Pipeline Services, Inc. - Houston TX
International Classification:
G01N 2772 G01N 2782 G01R 3312
US Classification:
324220
Abstract:
The apparatus of the invention is a segmented pig body having an electrical instrumentation subassembly mounted thereto. The subassembly consists of a plurality sensors for electromagnetically coupling to the inner surface of the pipeline, each of which generates a signal that varies as the localized relative permeability of the pipeline metal; an odometer assembly for generating correlating data; and an instrument for recording the signal and data for later analysis. The method of the invention comprises passing the pig through the pipeline while it is electromagnetically coupled by the sensors to the inner surface of the pipeline. During the pass, signals varying with the localized magnetic permeability of the pipeline wall and correlative data are generated and recorded. After the pass, the correlative data is used to correlate the signals to wall locations to locate stress occurrences.
System And Method For Analyzing Anomalies In A Conduit
- Wilmington DE, US James Simek - La Grange TX, US
International Classification:
G01N 27/90 G01N 27/87 G01N 27/904
Abstract:
Embodiments relate to a system and method for detecting and remediating selective seam weld corrosion in conduits such as steel pipes that transport oil and gas products. In particular, a probe detects magnetic flux leakage in at least two orientations. Anomalies in the conduit are then identified and assessed for selective seam weld corrosion based on factors that include the magnetic flux leakage detection and the depth of the anomalies. For certain categories of assessed anomalies, the corresponding portions of the conduit are selectively remediated in accordance with these factors.
System And Method For Detecting And Remediating Selective Seam Weld Corrosion In A Conduit
Embodiments relate to a system and method for detecting and remediating selective seam weld corrosion in conduits such as steel pipes that transport oil and gas products. In particular, a probe detects magnetic flux leakage in at least two orientations. Anomalies in the conduit are then identified and assessed for selective seam weld corrosion based on factors that include the magnetic flux leakage detection and the depth of the anomalies. For certain categories of assessed anomalies, the corresponding portions of the conduit are selectively remediated in accordance with these factors.
System And Method For Detecting And Remediating Selective Seam Weld Corrosion In A Conduit
Embodiments related to a system and method for detecting and remediating selective seam weld corrosion in conduits such as steel pipes that transport oil and gas products. In particular, a probe detects magnetic flux leakage in at least two orientations. Anomalies in the conduit are then identified and assessed for selective seam weld corrosion based on factors that include the magnetic flux leakage detection and the depth of the anomalies. For certain categories of assessed anomalies, the corresponding portions of the conduit are selectively remediated in accordance with these factors.
System And Method For Analyzing Anomalies In A Conduit
Embodiments relate to a system and method for detecting and remediating selective seam weld corrosion in conduits such as steel pipes that transport oil and gas products. In particular, a probe detects magnetic flux leakage in at least two orientations. Anomalies in the conduit are then identified and assessed for selective seam weld corrosion based on factors that include the magnetic flux leakage detection and the depth of the anomalies. For certain categories of assessed anomalies, the corresponding portions of the conduit are selectively remediated in accordance with these factors.
James Simek 1967 graduate of Thomas Jefferson High School in San antonio, TX is on Classmates.com. See pictures, plan your class reunion and get caught up with James and other high ...