Alexander R. Vaucher - Chino Hills CA, US Michael P. Miller - Chino Hills CA, US
Assignee:
Vaucher Aerospace Corporation - Irvine CA
International Classification:
F16C 39/06
US Classification:
505166
Abstract:
An alternating current (AC) generator and method of operating the generator are provided. The generator includes a pair of two opposing cylinders. Each cylinder includes a high-temperature superconductor material at a temperature. The superconductor material is in a superconducting state in the presence of an external magnetic field below a critical field strength, wherein the critical field strength is a function of the temperature of the superconductor material. A sum of a non-zero time-invariant magnetic field strength and a time-varying magnetic field strength cycles between at least a first field strength below the critical field strength for the superconductor material at the temperature and at least a second field strength above the critical field strength for the superconductor material at the temperature, such that the superconductor material cycles between a superconducting state and a non-superconducting state. The generator further includes a piston configured to move within the two cylinders. The piston includes a permanent magnet having a magnetic field that interacts with the superconductor material of each of the two opposing cylinders.
A motor and a method of operating the motor are provided. The motor includes a stator including a high-temperature superconductor material at a temperature. The superconductor material is in a superconducting state in the presence of an external magnetic field below a critical field strength, wherein the critical field strength is a function of the temperature of the superconductor material. The motor further includes a rotor including a plurality of permanent magnets and configured to rotate about an axis, wherein each magnet of the plurality of permanent magnets has a magnetic field that interacts with the superconductor material. A sum of a non-zero time-invariant magnetic field strength and a time-varying magnetic field strength cycles between at least a first field strength below the critical field strength for the superconductor material at the temperature and at least a second field strength above the critical field strength for the superconductor material at the temperature, such that the portions of the material cycles between a superconducting state and a non-superconducting state. A time-varying force is applied to the rotor by an interaction of the rotor's magnetic field with the portions of the superconductor material. In certain embodiments, a motor is provided.
An oscillator and method for applying a time-varying force to a magnet is provided. The oscillator includes a superconductor material at a temperature. The superconductor material is in a superconducting state in the presence of an external magnetic field below a critical field strength, wherein the critical field strength is a function of the temperature of the superconductor material. The oscillator further includes at least one magnetic field source configured to apply a magnetic field having a time-varying field strength to the superconductor material. The time-varying field strength cycles between at least a first field strength below the critical field strength for the superconductor material at the temperature and at least a second field strength above the critical field strength for the superconductor material at the temperature, such that the superconductor material cycles between a superconducting state and a non-superconducting state.
A motor and method of operation are provided. The motor includes a plurality of cylinders, wherein at least two of the cylinders are positioned at a non-zero angle relative to one another. Each cylinder includes a piston configured to move within the cylinder and a high-temperature superconductor material in a superconducting state in the presence of an external magnetic field below a critical field strength, wherein the critical field strength is a function of the temperature of the superconductor material. Each cylinder further includes a permanent magnet mechanically coupled to the piston and configured to move within the cylinder and to have a magnetic field that interacts with the superconductor material. A sum of a non-zero time-invariant magnetic field strength and a time-varying magnetic field strength cycles between at least a first field strength below the critical field strength for the superconductor material at the temperature and at least a second field strength above the critical field strength for the superconductor material, such that the superconductor material cycles between a superconducting state and a non-superconducting state, applying a time-varying force is applied to the magnet.
A motor and a method of operating the motor are provided. The motor includes a plurality of cylinders. Each cylinder includes a piston configured to move within the cylinder. Each cylinder further includes a high-temperature superconductor material at a temperature. The superconductor material is in a superconducting state in the presence of an external magnetic field below a critical field strength, wherein the critical field strength is a function of the temperature of the superconductor material. Each cylinder further includes a permanent magnet mechanically coupled to the piston and configured to move within the cylinder and to have a magnetic field that interacts with the superconductor material. A sum of a non-zero time-invariant magnetic field strength and a time-varying magnetic field strength cycles between at least a first field strength below the critical field strength for the superconductor material at the temperature and at least a second field strength above the critical field strength for the superconductor material at the temperature, such that the superconductor material cycles between a superconducting state and a non-superconducting state. A time-varying force is applied to the magnet by an interaction of the magnet's magnetic field with the superconductor material.
Alexander R. Vaucher - Chino Hills CA, US Michael P. Miller - Chino Hills CA, US
International Classification:
H01L 39/02 H02K 21/02 H02K 33/00
US Classification:
505166, 310 16
Abstract:
A motor and method of operating the motor are provided. The motor includes a plurality of cylinders arranged in a ring relative to one another and positioned at a non-zero angle relative to one another. Each cylinder includes a piston configured to move within the cylinder. Each cylinder further includes a high-temperature superconductor material in a superconducting state in the presence of an external magnetic field below a critical field strength, wherein the critical field strength is a function of the temperature of the superconductor material. Each cylinder further includes a permanent magnet mechanically coupled to the piston and configured to move within the cylinder and to have a magnetic field that interacts with the superconductor material. A sum of a non-zero time-invariant magnetic field strength and a time-varying magnetic field strength cycles between at least a first field strength below the critical field strength for the superconductor material and at least a second field strength above the critical field strength for the superconductor material, such that the superconductor material cycles between a superconducting state and a non-superconducting state. A time-varying force is applied to the magnet by an interaction of the magnet's magnetic field with the superconductor material.
Alexander R. Vaucher - Chino Hills CA, US Kevin S. McKinny - Hudson OH, US
International Classification:
G21B 1/00
US Classification:
376112
Abstract:
A superconducting neutron source and a method for producing a high intensity, high energy neutron beam having a narrow beam width. A pair of beam extraction electrodes are located in a vacuum vessel of a cyclotron. The electrodes deflect a pair of deuteron beams from a stream of ionized deuterium gas swirling within the vacuum vessel. The deuteron beams are extracted from the cyclotron and funneled through a superconducting beam focusing tube. The beams are focused by the superconducting tube so as to move towards and collide with one another within the tube. A narrow neutron beam is obtained by colliding staggered deuteron beams moving in the same direction so that the momentum of the colliding beams is retained.
Name / Title
Company / Classification
Phones & Addresses
Alexander R. Vaucher President
VAUCHER MOTOR COMPANY Mfg Motors/Generators
13089 Peyton Dr SUITE C349, Chino Hills, CA 91709 18101 Von Karman Ave, Irvine, CA 92612