A spherical osteotomy device for the efficient surgical sectioning of bone includes a part spherical body and a shank. The part spherical body includes an outer surface, an inner surface, a cutting end between the outer surface and the inner surface, an axis extending from the outer surface through the inner surface, and an origin on the axis. The inner surface has a substantially constant radius extending from the origin. The shank extends outwardly from the outer surface of the body and is substantially aligned with the axis. Other embodiments of an osteotomy device are described. Also provided is a method of using the osteotomy device for performing spherical osteotomies.
A spherical osteotomy device for the efficient surgical sectioning of bone includes a part spherical body and a shank. The part spherical body includes an outer surface, an inner surface, a cutting end between the outer surface and the inner surface, an axis extending from the outer surface through the inner surface, and an origin on the axis. The inner surface has a substantially constant radius extending from the origin. The shank extends outwardly from the outer surface of the body and is substantially aligned with the axis. Other embodiments of an osteotomy device are described. Also provided is a method of using the osteotomy device for performing spherical osteotomies.
Method Of Planning And Performing A Spherical Osteotomy Using The 3-Dimensional Center Of Rotation Of Angulation (Cora)
Noel FITZPATRICK - Surrey, GB Zsigmond Szanto - Twin Falls ID, US
International Classification:
A61F 5/00 A61B 5/05
US Classification:
606 87, 600425
Abstract:
A pre-surgical planning method for performing a spherical osteotomy for the surgical sectioning of a bone includes obtaining a CT scan of a bone. Subsequently manipulating the scan into a three-dimensional CAD format. Utilizing the scan to identify one or more centers of bone correction or 3D CORAs. A surface, configured in the shape of a portion of a sphere, e.g., a semisphere, is then superimposed on the computer representation of the bone. The center of the surface is positioned at a respective center of bone correction. The intersection of the surface and the bone defines a sectioning surface along which the bone is to be cut. Simulating a sectioning of the bone along the sectioning surface and the subsequent realignment of the bone in an optimal configuration using the computer is then performed. The computer simulation is then utilized as a guide for actually sectioning the bone.