Antonije R. Djordjevic - Belgrade, YU Aleksandra Stekovic - Belgrade, YU Marcel F. C. Schemmann - Maria-Hoop, NL Zoran Maricevic - Manlius NY
Assignee:
Teradvance Communications, LLC - Fayetteville NY
International Classification:
H03H 706
US Classification:
333167, 333172
Abstract:
A transmission line filter having low reflectivity and Gaussian characteristics includes at least one inductive element aligned along the transmission line and at least one shunt configuration branching off the transmission line including a capacitive element and a resistive element. The transmission line filter is embodied in complete and incomplete Gaussian filters, and in both lumped element and distributed-element configurations. A method of designing a transmission line filter having low reflectivity and Gaussian characteristics is provided in which values for desired filter parameters are ascertained, formulas for the values of the inductive, capacitive and resistive elements are derived in terms of the desired filter parameters and the number of half-cells, a number of half-cells for the filter required to achieve the desired filter parameters is selected, and lumped element values for the inductive, capacitive, and resistive elements are estimated using the selected number of half-cells.
Method And System For 80 And 160 Gigabit-Per-Second Qrz Transmission In 100 Ghz Optical Bandwidth With Enhanced Receiver Performance
Optical transmitter/receivers for use in a DWDM systems are provided. Transmission of data signals in a quadrature-return-to-zero (QRZ) format achieves a data transmission rate equal to eight times a base data rate, i. e. , 80 Gbps over a 100 GHz channel if the base data rate is 10 Gbps, with high non-linear performance by setting the polarization state of the data bands such that non-linear effects induced by PMD are reduced. Additionally, a transmitter achieves a transmission data rate equal to 16 times the base data rate by sharpening the QRZ pulses and interleaving pulse-sharpened QRZ data signals in the time domain, further doubling the data rate. Using counterpropagation in the transmitter, carrier signals and data signals traverse the same length of fiber, reducing fringing effects in the transmitter. Related techniques enhance reception and detection of data at high data rates. A local pulse-sharpened carrier is mixed with a QRZ data signal at a detector reducing amplification noise by a factor of two.
Method And System For 80 And 160 Gigabit-Per-Second Qrz Transmission In 100 Ghz Optical Bandwidth With Enhanced Receiver Performance
Optical transmitter/receivers for use in a DWDM systems are provided. Transmission of data signals in a quadrature-return-to-zero (QRZ) format achieves a data transmission rate equal to eight times a base data rate, i. e. , 80 Gbps over a 100 GHz channel if the base data rate is 10 Gbps, with high non-linear performance by setting the polarization state of the data bands such that non-linear effects induced by PMD are reduced. Additionally, a transmitter achieves a transmission data rate equal to 16 times the base data rate by sharpening the QRZ pulses and interleaving pulse-sharpened QRZ data signals in the time domain, further doubling the data rate. Using counterpropagation in the transmitter, carrier signals and data signals traverse the same length of fiber, reducing fringing effects in the transmitter. Related techniques enhance reception and detection of data at high data rates. A local pulse-sharpened carrier is mixed with a QRZ data signal at a detector reducing amplification noise by a factor of two.
Amplifier Composite Triple Beat (Ctb) Reduction By Phase Filtering
Marcel F. Schemmann - Echt, NL Zoran Maricevic - Manlius NY, US
Assignee:
Broadband Royalty Corporation - Wilmington DE
International Classification:
H03F 1/26
US Classification:
330149, 330310, 330306
Abstract:
In a broadband communication system there are multi-stage power amplifier systems for amplifying the power of radio-frequency (RF) communication signals. Each stage of the amplifier system results in composite triple beat (CTB) distortion, and if the phase of the CTB distortions are approximately the same (i. e. are in-phase), then the amplitudes of the distortions are added (i. e. “20 dB” rule). The amplifier system of the invention includes one or more phase filters positioned in series between the power amplifier stages. The phase filters are adapted to shift the phase of the communication signals, so that the phase of CTB distortions, resulting from the amplification of the communication signals in the amplifier stages between the phase filters, are substantially different (i. e. are out-of-phase). Thus, only the power of the CTB distortions are added (i. e.
Method And System For A Polarization Mode Dispersion Tolerant Optical Homodyne Detection System With Optimized Transmission Modulation
An optical homodyne communication system and method in which a side carrier is transmitted along with data bands in an optical data signal, and upon reception, the side carrier is boosted, shifted to the center of the data bands, and its polarization state is matched to the polarization state of the respective data bands to compensate for polarization mode dispersion during transmission. By shifting a boosted side carrier to the center of the data bands, and by simultaneously compensating for the effects of polarization mode dispersion, the provided system and method simulate the advantages of homodyne reception using a local oscillator. The deleterious effects of chromatic dispersion on the data signals within the data bands are also compensated for by applying a corrective function to the data signals which precisely counteracts the effects of chromatic dispersion.
Method And System For A Polarization Mode Dispersion Tolerant Optical Homodyne Detection System With Optimized Transmission Modulation
An optical homodyne communication system and method in which a side carrier is transmitted along with data bands in an optical data signal, and upon reception, the side carrier is boosted, shifted to the center of the data bands, and its polarization state is matched to the polarization state of the respective data bands to compensate for polarization mode dispersion during transmission. By shifting a boosted side carrier to the center of the data bands, and by simultaneously compensating for the effects of polarization mode dispersion, the provided system and method simulate the advantages of homodyne reception using a local oscillator. The deleterious effects of chromatic dispersion on the data signals within the data bands are also compensated for by applying a corrective function to the data signals which precisely counteracts the effects of chromatic dispersion.
Zoran Maricevic - West Hartford CT, US Eric Cormier - Southington CT, US Benedict J. Jackson - Beaverton OR, US Jayesh Bhatt - Windsor CT, US Marcel F Schemmann - Marea Hoop, NL Zhijian Sun - Avon CT, US
A channel alignment system in an optical communication network includes logic to sample power of a quadrature amplitude modulation (QAM) channel at a component downstream from a QAM modulator. The system determines if the sampled channel power has a sufficient level. The system signals power control logic of the QAM modulator to adjust a gain of the sampled channel.
Methods and systems for providing flexible node segmentation are provided. For example, the system can be configured to delay node segmentation in the headend/hub even though the fiber node has been segmented. When a desire for node segmentation in the headend/hub arises, the receiver can be efficiently upgraded through the use of a control signal to provide a receiver output port to each sub-service area.