A low impact foundation system requiring little or no excavation, and allowing for the preservation of the soil and drainage characteristics of the site upon which it is erected. The system utilizes small obliquely driven piles in combination with a pre-cast component designed to engage a standard foundation wall.
A novel foundation system, method of manufacture and method of implementation are disclosed, comprising a simplified cast structure/pile combination strengthened by dispersed steel fibers within the cementious material.
A low impact foundation system requiring little or no excavation, and allowing for the preservation of soil and drainage characteristics of the site upon which it is erected. The system utilizes small obliquely driven piles in combination with footing or otherwise footing components designed to engage a foundation wall and replace the common footing typically constructed below such walls.
A novel foundation system, method of manufacture and method of implementation are disclosed, comprising a simplified cast structure/pile combination advantageously shaped for selective positioning in different soil conditions to become a supporting foundation. In at least one aspect, the shape comprises a cavity or shaped recess that is initially empty, and operable to accept soil displaced by soil heave. The cavity preferably is configured to have a depth estimated to be equal to or greater that an estimated vertical heave displacement of a given site soil, in order to minimize soil heave displacement of the cast structure/pile combination. In at least one other aspect, the shape comprises a portion configured to cleave soil if the soil heaves.
A novel foundation system, method of manufacture and method of implementation are disclosed, comprising a simplified cast structure/pile combination advantageously shaped for selective positioning in different soil conditions to become a supporting foundation. In at least one aspect, the shape comprises a cavity or shaped recess that is initially empty, and operable to accept soil displaced by soil heave. The cavity preferably is configured to have a depth estimated to be equal to or greater that an estimated vertical heave displacement of a given site soil, in order to minimize soil heave displacement of the cast structure/pile combination. In at least one other aspect, the shape comprises a portion configured to cleave soil if the soil heaves.
Low environmental impact, surface installed, multiple pile foundation locking systems providing stable connection between above ground structures and the earth, having a plurality of driving holes in an engineered component through which piles may be driven into the surrounding soil and locked in a predetermined position to create, in differing configurations, the necessary resistances to any combination or relative proportions of bearing, uplift and lateral loads associated with such structures. The piles are driven at predetermined angles relative to the supported structure, consistent with its loading characteristics, and are locked in the driving holes through which they pass, further binding in their configuration under load.
Low environmental impact, surface installed, load transfer systems providing stable connection between above ground structures and the earth, having a plurality of offset driving holes in an integral structure member, or in a bracket or brackets attachable to such a structure, through which piles may be driven into the surrounding soil to create, in differing configurations, the necessary resistances to any combination or relative proportions of the bearing, uplift and lateral loads associated with such structures. The piles are driven at predetermined angles relative to the supported structure, and consistent with its loading characteristics, and bind under load against the offset driving holes through which they pass.
A pinned foundation system with resiliency under certain loading conditions and requiring minimum excavation, having a cast footing in combination with a plurality of sleeves through which piles may be driven into the soil to create the necessary bearing, uplift and lateral forces to support a structure. The sleeves are retained in fixed position relative to the footing, at predetermined angles corresponding to the specific structure loading characteristics desired for the ensuing foundation.