A balancing resistor and thermistor network for telephone circuits, and combination with an external relay, which reliably handles all three levels of adverse conditions, automatically resets under certain conditions, is physically small in size, and is strong. It is a flat ceramic substrate on both surfaces of which are screen-printed thick-film balancing resistor films. Also screen-printed on both surfaces are termination traces having portions so located that when the substrate substantially instantaneously fractures it reliably and substantially instantaneously breaks the circuits through the resistive films, the fracture occurring in response to a sudden high-voltage overload. Accordingly, there is no damage to, or melting or burning of, small wires in the telephone circuits at points near to or remote from the balancing resistor network. A thermistor film is screen-printed directly onto the substrate at a central region where there is no resistive film.
The film-type electrical power resistor includes a flat chip of aluminum oxide, having a resistive film screen-printed onto one of its sides. Leads are bonded to that side and electrically connected to the film, the leads being such that the chip may be cantilevered by the leads in a mold cavity before introduction of synthetic resin into the cavity, and with the lower chip surface spaced above the bottom cavity wall. A molded body is molded in the cavity to fully encapsulate the chip, film, and inner ends of the leads, there being no mold cup around the molded body. The molded body is formed of high thermal-conductivity thermosetting synthetic resin. Provided through the body is a bolthole for clamping of the resistor to an external chassis or heatsink. The space between the bottom surface of the chip and the flat bottom surface of the molded body is a heat-sinking volume formed of the high thermal-conductivity resin; and the bottom surface of such volume of resin is the bottom surface of the resistor. The stated volume does not contain any metal that is either in an electric circuit, or projects outwardly relative to the edges of the chip.
A resistor combination and method, that is formed by a substrate having a resistive film on it, and pins extruding from one edge of the substrate and connected to the film. A U-shaped cold region is provided on the substrate around at least much of the film, and is so constructed that application of common high overload voltages to the pins causes vertical fracture of the substrate. The resulting substrate pieces are held by the pins to the circuit board. In one embodiment, a synthetic resin housing is provided around the substrate.
An apparatus and method by which a flat film-type resistor is intentionally caused to thermal-shock fracture in response to a predetermined high-voltage overload condition. A stressed spring wire is mounted on such film-type resistor and connected in circuit with it. A predetermined solder and temperature gradient are employed to hold the spring wire in bent condition until the solder melts, whereupon the spring flexes and the circuit breaks. Heatsink portions are provided in the circuit board for such resistor, and receive terminal pins thereof.
Vibration And Shock-Resistant Film-Type Power Resistor
The power resistor has a metal housing and heatsink, the bottom wall of which is planar and has a bolt hole therethrough for tight securing of the resistor to a chassis. A planar film-type power resistor is mounted in the housing and encapsulated therein, being held close to the bottom wall of the housing. Heat from the film-type resistor passes through the bottom wall into the chassis, the result being that the power rating of the resistor is high. The metal housing is die-cast of a zinc alloy, at extremely low cost yet with substantially the same heat-transmission characteristic as that of conventional die-castable aluminum alloys.
A fault current fusing resistor, comprising a substrate on which there is a line of resistive film formed of metal and glass in a conductive film, which line is closely confined by containing and sealing substances to prevent venting of vapor from the line during the fusing caused by an electrical fault condition.
Film-Type Heat Sink-Mounted Power Resistor Combination Having Only A Thin Encapsulant, And Having An Enlarged Internal Heat Sink
A low-cost heat sink-mounted power film resistor having a high power rating for its footprint size, and not incorporating any housing. The resistor is bolted or otherwise secured tightly to an external heat sink in high heat-conduction relationship, the external heat sink being contacted flatwise by a rectangular internal heat sink. The footprint size and shape of the internal heat sink correspond substantially to those of commercially-marketed power film resistors having molded synthetic resin housings. The internal heat sink is bonded in high heat-conductivity relationship to a ceramic chip having a resistive film on the side thereof remote from the heat sink. Over such resistive film is a thin environmental coating. The leads are provided and connected to spaced portions of the film, on metalization pads.
Heatsink-Mountable Power Resistor Having Improved Heat-Transfer Interface With The Heatsink
Richard E. Caddock - Winchester OR Richard E. Caddock - Roseburg OR
Assignee:
Caddock Electronics, Inc. - Riverside CA
International Classification:
H01C 108
US Classification:
338 51
Abstract:
A power resistor having much improved heat dissipation ability to an underlying heatsink because a step or protuberance is provided that cooperates with the mounting bolt or screw to largely nullify the effects of molding-caused camber or curvature.
Name / Title
Company / Classification
Phones & Addresses
Richard Caddock Site Manager
Caddock Electronics Inc Cutting Tool and Machine Tool Accessory Manufacturing
17271 N Umpqua Hwy, Roseburg, OR 97470 541 496-0700, 541 496-0408
Hey there! I'm a self produced Artist, Audio/Mixing Engineer, and Music Producer :)I have a home studio, and access to a Neve VR Legend studio and a SSL Studio at the media school I've been s...