Qualcomm - Greater San Diego Area since Jun 2011
Staff Engineer
Xilinx Apr 1998 - Jun 2011
Staff IC Design Engineer
Education:
Duke University
MS, Electrical Engineering
Duke University
PhD, Electrical Engineering
Indian Institute of Technology, Madras
B.Tech, Electronics & Communication Engineering
An integrated circuit (IC) device includes a first voltage supply for powering first circuitry within the device, a second voltage supply for powering second circuitry within the device, a suspend circuit having an output to generate a power-down signal, and a voltage regulator circuit coupled to a power node. The voltage regulator circuit includes a first transistor coupled between the first voltage supply and the power node and having a gate responsive to a regulation signal, a second transistor coupled between the second voltage supply and the power node and having a gate responsive to the power-down signal, and a well bias circuit having an input coupled to receive the power-down signal, a first output coupled to a well region of the first transistor, and a second output coupled to a well region of the second transistor.
Bandgap System With Tunable Temperature Coefficient Of The Output Voltage
A voltage supply circuit for generating a composite bandgap reference voltage includes a single bandgap reference voltage circuit and a select circuit. The bandgap reference circuit has a first output to generate a first bandgap voltage having a first temperature coefficient and has a second output to generate a second bandgap voltage having a second temperature coefficient that is different from the first temperature coefficient. The select circuit has a first input to receive the first bandgap voltage, a second input to receive the second bandgap voltage, and an output to selectively provide either the first bandgap voltage or the second bandgap voltage as the composite bandgap reference voltage.
Highly Reliable And Zero Static Current Start-Up Circuits
A bandgap reference voltage circuit includes a bandgap circuit, a start-up circuit, and a recovery circuit. Upon device power-on, the start-up circuit provides a start-up current to initialize the bandgap circuit to a valid state, during which the bandgap circuit generates a substantially constant bandgap reference voltage. Once the bandgap circuit is in the valid state, the start-up circuit turns itself off. If the bandgap reference voltage falls to a level that causes the bandgap circuit to enter an invalid state, the recovery circuit turns on and provides a recovery current to the bandgap circuit that returns the bandgap circuit to the valid state, after which the recovery circuit turns itself off.
Power-On Reset Circuit For A Voltage Regulator Having Multiple Power Supply Voltages
A voltage regulator and method of voltage regulation for a power-on reset condition are described. Voltage regulation control signals responsive to the power-on reset condition are obtained. The control signals are generated with a first voltage to be associated with a second voltage to provide a first power-on-reset signal and a second power-on-reset signal which are opposite in state to one another. A portion of driver logic is tri-stated responsive to the control signals, and the second power-on-reset signal to at least impede supply to supply current leakage. Voltage is pulled up on a first output port and a second output port of the driver logic responsive to the first power-on-reset signal. A portion of a semiconductor substrate is electrically coupled to a higher one of a first voltage and a second voltage responsive to the pulling up to at least further impede the supply to supply current leakage.
Enhanced Voltage Regulation With Power Supply Disable Capability For Low-Power Operation
A method and apparatus is provided that facilitates low-power consumption during a suspend mode of operation of an integrated circuit (IC), while substantially eliminating current paths within the IC that may be created should any of the power supplies be deactivated during the suspend mode. Deactivation of one or more power supplies during a normal mode of operation is also facilitated, whereby current paths created by the deactivated power supplies are also eliminated. Voltage bias circuitry is added to certain voltage regulators within the IC, so as to maintain those voltage regulators inactive due to a drop in voltage magnitude that is sensed when one or more power supplies are disabled. In addition, a well bias circuit is employed to maintain the substrate bias potential of certain devices within the voltage regulators and associated amplifiers to a fixed potential depending upon the operational mode of the IC.
Voltage Sensing In A Supply Regulator For A Suspend Mode
A voltage regulator for supplying power to volatile memory cells during a suspend mode of an integrated circuit is described. The integrated circuit in an awake mode generates a regulated voltage at an output node using a first supply voltage and in the suspend mode generates the regulated voltage at the output node using a second supply voltage, at less voltage than the first supply voltage. The second supply voltage is electrically decoupled from the output node for transitioning from the suspend mode to the awake mode, and the first supply voltage is electrically decoupled from the output node for transitioning from the awake mode to the suspend mode.
Method And Apparatus For Saving And Restoring The State Of A Power-Gated Memory Device
A method and apparatus involving a circuit is disclosed. The circuit has separate first and second portions, where the first portion includes a first memory device such as a flip-flop, and the second portion includes a second memory device such as a latch. The first portion is selectively operated in first and second operational modes, the first portion consuming less power in the second operational mode than in the first operational mode. During the first operational mode a logical value is maintained in the flip-flop and can vary dynamically. During the second operational mode, the state that the logical value had at a point in time just before the first portion entered the second operational mode is maintained in the latch. Then, after the first portion switches from the second operational mode back to the first operational mode, the state of the logical value in the latch is restored to the flip-flop.
A semiconductor device having a phase-locked loop (“PLL”) () drives a VCO () of the PLL circuit with a first control voltage (V) produced by a loop filter () when a first clock signal (clk_ref) is present. The VCO produces an output frequency while the PLL circuit is operating off the first clock signal. When the first clock signal is lost (ref_lost), a control voltage maintenance circuit () produces a second control voltage maintaining the VCO output frequency. In one device, the control voltage maintenance circuit includes a phase-frequency detector () that can operate off of either the clock reference signal or a master clock signal. In an alternative device, the control voltage maintenance circuit includes a voltage generator () that produces a generated voltage that drives the loop filter when lock is lost.
Googleplus
Narasimhan Vasudevan
Narasimhan Vasudevan
Youtube
3 April 2022
Video from Vasu.
Duration:
2m 52s
Prithi Narasimhan's Thematic Concert for Kala...
Theme : Journey Through Carnatic Composers Presenting the treasures pa...
Duration:
1h 45m 37s
Indian Music Meets Western Classical - By: V....
"Raga Saga" by V.S. Narasimhan is available for purchase NOW on (opt...