A control system for selectively isolating a power supply from a common bus is provided. The control system comprises a connection to an output path of an output signal of the power supply and a resistive element providing a variable resistance between an input terminal and an output terminal. The input terminal is connected to the connection and the output terminal is connected to the common bus. The resistive element further comprises a control terminal allowing adjustment of the variable resistance. A control element provides a control signal to the control terminal; the control element is responsive to current flowing between the output path and the common bus.
System And Method Providing Output Signal Control For A Power Supply
A control system for selectively isolating a power supply from a common bus is provided. The control system comprises a connection to an output path of an output signal of the power supply and a resistive element providing a variable resistance between an input terminal and an output terminal. The input terminal is connected to the connection and the output terminal is connected to the common bus. The resistive element further comprises a control terminal allowing adjustment of the variable resistance. A control element provides a control signal to the control terminal; the control element is responsive to current flowing between the output path and the common bus.
System And Method For Maximizing Short-Term Energy Storage In A Supercapacitor Array For Engine Start Applications
- Houston TX, US Marlowe James Buchanan - Lake Oswego OR, US
International Classification:
F02N 11/08 H02J 7/00 H02J 7/34
Abstract:
A system for starting an internal combustion engine includes a battery system, a charger to receive DC battery power from the battery system and convert the power to a DC charging current, a supercapacitor array having a plurality of supercapacitor cells connected to the charger to receive the DC charging current therefrom, and a motor starter to start the internal combustion engine responsive to a DC input from the supercapacitor array. The charger modifies a voltage of the supercapacitor cells in an on-demand fashion, with the charger programmed to provide DC charging current to the supercapacitor array to hold the supercapacitor cells at a first voltage, receive a bump-up command indicative of an upcoming engine start and, responsive to receiving the bump-up command, provide DC charging current to the supercapacitor array to increase a voltage of the supercapacitor cells temporarily to a second voltage higher than the first voltage.
- Houston TX, US Marlowe James Buchanan - Lake Oswego OR, US
International Classification:
H02H 9/04
Abstract:
A protection device for connection to a power bus of an electrical power system includes a bidirectional clamping apparatus configured to conduct current when a voltage across the bidirectional clamping apparatus is more positive than a positive voltage standoff and when the voltage across the bidirectional clamping apparatus is more negative than a negative voltage standoff; and a control element in series with the bidirectional clamping apparatus, the control element and the bidirectional clamping apparatus providing a current path across the power bus when a magnitude of a voltage on the power bus exceeds a positive voltage threshold or a negative voltage threshold, the positive voltage threshold being greater than the positive voltage standoff of the bidirectional clamping apparatus and the negative voltage threshold being more negative than the negative voltage standoff of the bidirectional clamping device.
Power System With Electronic Impedance Switch Controls And Methods For Supplying Power To A Load
Cooper Technologies Company - , US Marlowe J. Buchanan - Lake Oswego OR, US
Assignee:
Cooper Technologies Company - Houston TX
International Classification:
H02M 3/156 B60L 1/00 H03K 17/30
US Classification:
307 91, 323299, 307130
Abstract:
Power systems, electronic impedance controlled switches and controls, and methods of supplying power to a load include features to maximize safe operating area (SOA) of an electronic impedance switch without exceeding its SOA. The power system may be a vehicle electrical power system including a DC power supply battery and a boost converter.