A glitch-free, clock switching circuit in which an asynchronous, sequential logic circuit has as inputs a clock select signal and a pair of clock signals. A plurality of operating state variable signals are generated in the sequential logic circuit in response to transitions in the input signal. A combinational logic clock output circuit is responsive to the input clock signals and predetermined ones of the operating state variable signals for outputting a newly selected clock signal only when said predetermined operating state variable signals indicate the sensing of a falling edge of the currently outputted clock signal followed by a falling edge of the newly selected clock signal.
Hung K. Cheung - Fremont CA, US Hee Wong - San Jose CA, US
Assignee:
National Semiconductor Corporation - Santa Clara CA
International Classification:
H03K 23/00
US Classification:
377118, 377119
Abstract:
An edge counter counting both rising and falling edges of an input signal is implemented with combinational logic, without using flip-flops. The combinational logic is designed using intermediate signals and state transitions producing an output signal having a cycle corresponding to a predetermined odd or even number of input signal edges, with the logic optimized and protected against entry into “stuck” states. A low power, low gate count edge counter is thus implemented with an output signal duty cycle at least as balanced as the input counter duty cycle.