This method will produce depolymerized lignins substantially free from sodium compounds. Black liquor supplied from a pulping process is utilized for providing a mixture of depolymerized lignins dispersed and dissolved in absolution containing sodium hydroxide. The mixture is then separated to form depolymerized lignins and a solution containing sodium hydroxide. Following separation, the depolymerized lignins are then extracted with water to produce an extractate containing water soluble sodium compounds. The extracted depolymerized lignins, containing sodium compounds, are then reacted with an acid to form sodium salts. The solution containing sodium salts is then separated from the extracted depolymerized lignins to produce substantially sodium free depolymerized lignins. The separated solution containing sodium hydroxide is combined with the extractate and the combination, subsequent to removal of water, is made available to reuse for recycle to depolymerize, disperse and dissolve additional lignins. As a result a mixture containing depolymerized lignins is created.
Method To Separate Ethanol From A Solution Containing Sulfuric Acid And Ethanol
A method to separate ethanol from a solution containing sulfuric acid and ethanol which employs a vessel in which ethanol is humidified from a gas. By adding a gas to a solution containing sulfuric acid and ethanol in the vessel a gas is utilized to form humidified ethanol. Heat is provided to the solution to replace heat of vaporization of the humidified ethanol to maintain a substantially constant thermal equilibrium condition within the vessel to compensate for the energy of ethanol evaporation. The gas humidified with ethanol is then parted from the vessel to remove ethanol from the solution. The sulfuric acid, substantially devoid of ethanol, is likewise removed from the vessel. The ethanol humidified gas is thereupon separated from the ethanol to provide ethanol and a gas containing ethanol. The gas, containing ethanol, is retrieved for recycle to humidify additional ethanol.
Sugars derived from acidic hydrolysis of biomass consist of glucose and xyloses which are subjected to dehydration, within the hydrolysis environment, to form heterocyclic compounds, furfural and hydroxymethylfurfural. By providing a vessel for hydrolysis with a supply of a biomass, hydrolysate, containing acid and heterocyclic compounds, is formed. Upon withdrawing the hydrolysate from the vessel, and subjecting the hydrolysate to extracting with a hydrocarbon forms an extractate, containing dissolved heterocyclic compounds within the hydrocarbon, and a raffinate, providing a hydrolysate substantially devoid of heterocyclic compounds for recycle to the hydrolysis vessel. Withdrawing residue remaining from hydrolysis, containing lignins, from the vessel, and subjecting the residue to filtering, resulting in a filtrate for recycle to the vessel and provides filtered residue for subsequent processing. Thereby, heterocyclic compounds are derived from a biomass and withdrawn from the hydrolysis vessel. Residue, remaining from hydrolysis of the biomass, is also withdrawn from the hydrolysis vessel.
Production Of Carbon Monoxide From Carbon Dioxide And Carbon
A method is presented for production of carbon monoxide by reacting carbon dioxide and carbon to form carbon monoxide. Carbon is obtained from pyrolysis of carbonaceous solids. Following separating carbon monoxide from carbon, reacting to form carbon monoxide, the remaining mass contains inorganic and organic components. The mass containing inorganic and organic components is subjected to combustion by air to produce a flue gas and a residue containing inorganic components. The carbon monoxide, removed from the carbon, is reacted with steam to form a gaseous mixture of carbon dioxide, hydrogen and carbon monoxide which is a synthesis gas. A basic solution capable of combining with carbon dioxide is employed to remove carbon dioxide from a synthesis gas to provide synthesis gas substantially free of carbon dioxide.
Hydroxymethylfurfural Derived From Cellulose Contained In Lignocellulose Solids
A method to produce hydroxymethylfurfural from cellulose contained within lignocellulose solids is disclosed. Hemicellulose contained in lignocellulose solids is converted to furfural. Lignocellulose solids, containing cellulose, is added to a vessel containing an aqueous acidic solution which is employed for hydrolysis of cellulose, contained within lignocellulose solids, to form glucose. Subjecting the glucose to additional hydrolysis to convert glucose and form hydroxymethylfurfural and removing hydroxymethylfurfural from the vessel are procedures applied. Solids remaining from hydrolysis containing lignins are filtered and then extracted with water to remove aqueous acidic solution contained within solids and form an extractate containing dilute aqueous acidic solution. The extactate is combined with a dilute solution of aqueous acidic solution removed from the vessel. Dilute solutions of aqueous acidic solution are treated to remove water and then the aqueous acidic solution is recycled to the vessel employed for hydrolysis of cellulose within lignocellulose solids.
Sugars derived from acidic hydrolysis of biomass consist of glucose and xyloses which are subjected to dehydration, within the hydrolysis environment, to form heterocyclic compounds, furfural and hydroxymethylfurfural. By providing a vessel for hydrolysis of biomass, a hydrolysate containing acid and heterocyclic compounds is formed. Upon withdrawing the hydrolysate from the vessel, and employment of separating means for removing heterocyclic compounds from the hydrolysate, a hydrolysate substantially devoid of heterocyclic compounds is provided for recycle to the vessel and will provide heterocyclic compounds. By withdrawing solids, containing lignins remaining from hydrolysis of biomass, from the vessel, and filtering the solids, to result in a filtrate for recycle to the vessel and provide filtered solids for subsequent processing. Thereby, heterocyclic compounds are derived from a biomass and withdrawn from the hydrolysis vessel, and solids, remaining from hydrolysis of biomass, are withdrawn from the hydrolysis vessel.
Continuous alternating current is derived from a differential operational amplifier supplied by direct current. The differential operational amplifier produces alternating current located on the positive input of the differential operational amplifier. Output of the differential operational amplifier is received by a transformer to produce alternating current. Voltage from the transformer is fed back to the negative input of the differential operational amplifier to provide feedback for the differential operational amplifier. Whereby direct current provided to a differential operational amplifier is transformed to continuous alternating current.
Pulp, containing black liquor, is separated to produce pulp substantially free of black liquor. An organic solvent forms a layer within a vessel and adding a pulp containing black liquor will establish three layers. From the lower layer, pulp substantially free of black liquor is removed. From the upper layer, black liquor substantially free of pulp is removed, and the layer of organic solvent is retained in place within the vessel. The resulting separation, by dissimilar densities of the organic solvent and pulp containing black liquor produces black liquor devoid of additional dilution by water whereby pulp containing black liquor is separated to create pulp substantially free of black liquor and provides black liquor separated from the organic solvent.