A one-piece top closure for a battery enclosure such as a lantern battery is described including a substantially planar top surface in which is integrally mounted a recharge jack of improved design, and in another embodiment there is disclosed discrete spacer elements integral with the top closure and which project to bridge the space from the surface of the top closure to the electrochemical cells contained within the enclosure.
Axel Sjogren - Lakewood CO Gary Carson - Golden CO Steven Estergreen - Mulino OR Timothy Taga - Broomfield CO Rodger Stewart - Broomfield CO
Assignee:
Cobe Laboratories, Inc. - Lakewood CO
International Classification:
B01D 6100 A61M 114
US Classification:
422 46
Abstract:
A method for manufacturing an exchanger includes the steps of folding sheet material in a series of pleats, placing the folded sheet material in a casing having an opening defined by walls with distal edges, covering the distal edges with end portions of the sheet material, and affixing a cover to the casing by simultaneously melting a portion of the cover and the sheet covered distal edges of the walls, and contacting the cover with the sheet material covering the distal edges of the walls. The method may also include melting a portion of the cover and/or the casing and placing the melted cover on the casing so that the melted portion contacts pleats of the sheet material, and permitting the melted material to cool and solidify and form a bond with the sheet material. The method may further include melting the side edges of the folded sheet material as well as the four edges of the casing and cover and the inner surfaces of the side walls, and then bonding the side walls to the melted folded material and the melted casing cover edges.
Axel Sjogren - Littleton CO Gary Carson - Golden CO Steve Estergreen - Wheat Ridge CO Timothy Taga - Broomfield CO Rodger Stewart - Lafayette CO
Assignee:
Cobe Laboratories, Inc. - Lakewood CO
International Classification:
B01D 6100 A61M 114
US Classification:
422 46
Abstract:
An exchanger for oxygenating blood includes a casing having walls and a cavity, sheet material with first and second ends covering distal edges of the walls, and a cover extending over the cavity to sandwich the first and second ends of the sheet material between the cover and the edges of the walls. The cover is melted into the sheet material and the distal edges of the walls. In another embodiment, a blood oxygenator includes a first compartment having a closed casing divided by a folded sheet of membrane material forming a first blood chamber and a first gas chamber. The casing has first and second manifolds in fluid communication with the first blood chamber. A second compartment is interconnected with the first compartment and has a closed casing divided by a folded sheet of membrane material forming a second blood chamber and a second gas chamber. The casing has third and fourth spaced apart manifolds in fluid communication with the second blood chamber. A first conduit connects an outlet of the first manifold to the an inlet of the third manifold, and a second conduit connects an outlet of the fourth manifold to an inlet of the second manifold.
A one-piece top closure for a battery enclosure such as a lantern battery is described including a substantially planar top surface in which is integrally mounted a recharge jack of improved design, and in another embodiment there is disclosed discrete spacer elements integral with the top closure and which project to bridge the space from the surface of the top closure to the electrochemical cells contained within the enclosure.