Abstract:
An induction furnace includes an induction coil, an electrically non-conductive crucible having an inner diameter disposed within the induction coil, and an electrically conductive member disposed below the crucible and having an outer diameter which is further from the induction coil than is the inner diameter of the crucible. Due to the non-conductive nature of material disposed within the crucible at lower temperatures, the induction coil initially inductively heats the conductive member, which transfers heat to the material to melt a portion of the material. Once the material is susceptible to inductive heating (usually upon melting) the susceptible material is inductively heated by the induction coil. During the process, inductive heating of the material greatly increases as inductive heating of the conductive member greatly decreases due to low resistivity of the molten material and due to the molten material being closer to the coil than is the conductive member.